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Abstract. The energies of some excited states with the total angular momentum L = 0, 1 and 2, the total
spin of two electrons S = 0 and 1, and the even and odd parities are precisely calculated directly from the
Schrödinger equation where the mass of the helium nucleus is finite. Moreover, we find that the solutions
to the equation for the excited states have some more nodes, which can be used to distinguish the states
with the same spectral term.

PACS. 03.65.Ge Solutions of wave equations: bound states – 32.30.-r Atomic spectra

1 Introduction

A helium atom is a typical Coulomb three-body system
with strong correlated motion of two electrons. The nu-
merical calculation of the energy levels and the wave func-
tions of a helium atom is one of the most interesting
and fundamental problems in the atomic physics. The
variational methods can achieve very high precision for
energy values [1–3]. However, the difficulty in choosing
the variational functions is aggravated for the excited
states, especially for the party (−1)`+1. It was recog-
nized rather early that the naive hyperspherical harmonic
(HH) method has very limited accuracy. Various efforts
have been devoted to overcome the substantial drawbacks
in the naive HH method [4–8], such as the correlation
function HH method [9–13], the hyperspherical coordinate
method [14–17], the method of complex coordinate rota-
tions [18–20], the R-matrix method [21] and so on.

In our previous papers [23–27] we presented a new
method to calculate the energy levels of a quantum three-
body system, where the motion of the center of mass and
the global rotation of the system are completely separated
from the internal motion. Only three internal variables
are involved in both the generalized radial functions and
equations. The internal variables are chosen as the hyper-
radius ρ and two dimensionless η and ζ to make the po-
tential a meromorphic function [28]. Expanding the wave
function by a series of η and ζ, we obtain an ordinary
differential matrix equation with respect to the hyperra-
dius ρ. We have precisely calculated the lowest energies
for some spectral terms 2S+1Le(o) of a helium atom in our
previous papers [25,26]. Since the solution to the ordinary
differential matrix equation with respect to the hyperra-
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dius ρ has no node for the bound state with the lowest
energy in a spectral term, in the calculation the series
converges very fast. However, there exist some nodes for
the excited states, which slow down the convergence of
the series in calculation. In the present paper we directly
calculate by both the propagation matrix F (ρ) and its in-
verse matrix G(ρ) to bypass the nodes and to obtain the
energy levels for some excited states, where the total or-
bital angular momentum L is 0, 1 and 2, the total spin S
is 0 and 1, and the parity is even and odd.

The plan of this paper is as follows. We will sketch
the method in Section 2 [25–27] and calculate the energy
levels of some excited states in Section 3. The summary
and discussion is given in Section 4.

2 The method

After removing the motion of the center of mass and the
global rotation, the Schrödinger equation for a helium
atom reduces to the generalized radial equations [26]

Ψ `λ` (x,y) =
∑̀
q=λ

ψ`λq (ξ1, ξ2, ξ3)Q`λq (x,y), (1)

∆ψ`λq + 4q∂ξ1ψ
`λ
q + 4(`− q + λ)∂ξ2ψ

`λ
q

+ 2(q − λ)∂ξ3ψ
`λ
q−1 + 2(`− q) ∂ξ3ψ`λq+1

= −2(E − V )ψ`λq , λ ≤ q ≤ `, λ = 0, 1,
(2)

∆ψ`λq (ξ1, ξ2, ξ3) =
{

4ξ1∂2
ξ1 + 4ξ2∂2

ξ2 + (ξ1 + ξ2) ∂2
ξ3

+4ξ3 (∂ξ1 + ∂ξ2) ∂ξ3 + 6 (∂ξ1 + ∂ξ2)}ψ`λq (ξ1, ξ2, ξ3),
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where x and y are the Jacobi coordinate vectors, ξ1 =
x · x, ξ2 = y · y and ξ3 = x · y are the internal variables,
and Q`λq (x,y) are the generalized harmonic polynomials

Q`λq (x,y) =
(x1 + ix2)q−λ(y1 + iy2)`−q

(q − λ)!(`− q)!
× {(x1 + ix2)y3 − x3(y1 + iy2)}λ · (3)

In order to improve the convergence of the series, we define
new internal variables (ρ, η, ζ) to make V a meromorphic
function [28]

ρ = (ξ1 + ξ2)1/2 , η =
r23

ρ
=
(

2ξ2
ξ1 + ξ2

)1/2

,

ζ =
r12

ρ
+
r13

ρ

=

{
(M + 2)ξ1 +Mξ2 + 2 [M(M + 2)]1/2 ξ3

2M (ξ1 + ξ2)

}1/2

(4)

+

{
(M + 2)ξ1 +Mξ2 − 2 [M(M + 2)]1/2 ξ3

2M (ξ1 + ξ2)

}1/2

,

V = −2ζ
ρp

+
1
ρη
, p =

η2 +Mζ2 −M − 2
2M

· (5)

Since the total wave function has to be antisymmetric in
the permutation of two electrons, the spatial wave function
Ψ is symmetric when S = 0 and antisymmetric when S =
1. Because all new internal variables ρ, η and ζ remain
invariant in the permutation of two electrons, we have
to introduce a variable s, which changes its sign in the
permutation, to construct the wave function with the right
property in the permutation:

s =
r12

ρ
− r13

ρ
=

2ξ3
ρ2ζ

(
M + 2
M

)1/2

· (6)

Ψ
(S)`λ
` (x,y) =

∑̀
q=λ

φ(S)`λ
q (ρ, η, ζ)sδ(q)Q`λq (x,y)/ρ`+λ,

(7)

δ(q) =

{
0 when `− q + λ− S is even

1 when `− q + λ− S is odd

Now, we rewrite the generalized radial functions
φ

(S)`λ
q (ρ, η, ζ) as an (`− λ+ 1)× 1 matrix φ(S)`λ(ρ, η, ζ),

satisfying the coupled partial differential equations(
∂2
ρ +

5
ρ
∂ρ +

4Λ(S)`λ

ρ2

)
φ(S)`λ(ρ, η, ζ) =

− 2(E − V )φ(S)`λ(ρ, η, ζ), (8)

where S = 0 or 1, and λ = 0 or 1, and Λ(S)`λ is an
(`− λ + 1)-dimensional matrix differential operator. One
can find the explicit forms for Λ(S)`λ in our previous pa-
pers [25,26]. In the calculation of equation (8) which de-
scribes the internal motions of a helium atom with the

given total spin S, the total angular momentum quan-
tum number ` and the parity (−1)`+λ, we expand φ(S)`λ

by a series as ηaζb and truncate the series at the degree
N , the highest sum of exponents. The coefficients are the
functions only depending on the hyperradius ρ. In order
to derive the equations, it is necessary to calculate the
matrix elements of the operators Λ and V between the
basis functions. We first calculate the Jacobi determinant
J(η, ζ) for the replacement of variables from x,y to ρ, η, ζ
and the Euler angles. Then, we integer over the Euler an-
gles and obtain the weight functions g(S)`λ [25,26]. At
last, we change the basis functions ηaζb by the Schmidt
method and similarity transformation to the orthogonal
basis B(S)`λ

m (η, ζ) satisfying∫
Ω

∫
dηdζJ(η, ζ)B(S)`λ

m (η, ζ)†

× g(S)`λB
(S)`λ
m′ (η, ζ) = δmm′ ,∫

Ω

∫
dηdζJ(η, ζ)B(S)`λ

m (η, ζ)†

× g(S)`λΛ(S)`λB
(S)`λ
m′ (η, ζ) = δmm′Λ

(S)`λ
mm ,∫

Ω

∫
dηdζJ(η, ζ)B(S)`λ

m (η, ζ)†

× g(S)`λV B
(S)`λ
m′ (η, ζ) = V

(S)`λ
mm′ (ρ), (9)

where Λ(S)`λ
mm and ρV

(S)`λ
mm′ do not depend on ρ.

The functions φ(S)`λ(ρ, η, ζ) now are expanded with
respect to the basis B(S)`λ

m (η, ζ), where the coefficients
R

(S)`λ
m (ρ) are the hyperradial functions depending on the

hyperradius ρ. Since the matrix for the potential V is
non-diagonal, we rewrite the functions as a column ma-
trix R(S)`λ(ρ), satisfying the following matrix equation(

d2

dρ2
+

5
ρ

d
dρ

+
4Λ(S)`λ

ρ2

)
R(S)`λ(ρ) =

− 2
[
E − V (S)`λ(ρ)

]
R(S)`λ(ρ),

S = 0 or 1, λ = 0 or 1. (10)

Equation (10) is a second-order ordinary differential equa-
tion, and its solutions corresponding to the excited states
have some nodes. As done in references [25,26,28], we
solve the propagation matrix F (S)`λ(ρ) instead of the hy-
perradial function R(S)`λ(ρ) directly:

ρ
d
dρ
R(S)`λ(ρ) = F (S)`λ(ρ)R(S)`λ(ρ). (11)

Substituting equation (11) into equation (10), we obtain

ρ
dF (S)`λ(ρ)

dρ
+ F (S)`λ(ρ)2 + 4F (S)`λ(ρ) =

− 4Λ(S)`λ − 2
[
E − V (S)`λ(ρ)

]
ρ2, (12)

and the boundary condition:

F (S)`λ(0)2 + 4F (S)`λ(0) = Λ(S)`λ. (13)
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Table 1. The numerical calculation for the energy levels of some excited states in a helium atom (in the atomic unit).

Spectral term No. of Numerical results for E Observation
2S+1Le(o) nodes Our results Other results [29,30] [33,34]

1s2 1Se 0 2.9033045555601 2.9033045556 2.90338629a

1s2s 1Se 1 2.145678575 2.1456785860 2.14577009

1s3s 1Se 2 2.06095295 2.0609890809 2.06107971

1s4s 1Se 3 2.031218 2.0333078175 2.03339816

1s2s 3Se 0 2.174930188 2.1749301891 2.17502843

1s3s 3Se 1 2.0683993 2.0684052422 2.06849761

1s4s 3Se 2 2.035420 2.0362328278 2.03632385

1s2p 1Po 0 2.123545643 2.1235455653 2.12363788

1s3p 1Po 1 2.05483507 2.0548626607 2.05495355

1s4p 1Po 2 2.029143 2.0307903858 2.03088085

1s2p 3Po 0 2.132880637 2.1328806406 2.13296985

1s3p 3Po 1 2.05778447 2.0578016 2.05789149

1s4p 3Po 2 2.0307414 2.0320468 2.03213691

2p3p 1Pe 0 0.5801657683 0.580165768 0.58016394b

2p4p 1Pe 1 0.5399670 0.5399672

2p2 3Pe 0 0.7103966457 0.710396457 0.71084835c

2p3p 3Pe 1 0.5677868 0.56773387

1s3d 1De 0 2.05530605 2.055338994 2.05542923

1s4d 1De 1 2.0288772 2.0310014 2.03109162

1s3d 3De 0 2.0553229 2.055354585 2.05544481

1s4d 3De 1 2.0289701 2.0310104 2.03110061

2p3d 1Do 0 0.5637256

2p4d 1Do 1 0.5345003

2p3d 3Do 0 0.5592482

2p4d 3Do 1 0.5325974

aReference [33], breferences [32–34], creferences [32–36].

For a given energy E = −ε, we can numerically calcu-
late the matrix F (S)`λ(ρ) from equations (12, 13) by the
method of analytic continuation. Namely, at a given po-
sition ρ and the length of step ∆ρ (say 0.1) we calculate
F (S)`λ(ρ + ∆ρ) by the Taylor series until the sum of the
square elements of the next last term becomes less than
10−10 and that of the last term is smaller. If the term of
(∆ρ)22 could not satisfy this condition, we will decrease
the length of step. If the condition still could not be sat-
isfied, it means a node appears and we calculate the in-
verse matrix G(S)`λ(ρ) = F (S)`λ(ρ)−1 instead. We also
check the eigenvalues of F (S)`λ(ρ) to see whether one of
them becomes negative infinity (big number) and jumps
to positive infinity and to make sure a node occurs. As ε
decreases, if we find the number of nodes increases by one,
it means a bound state occurs. The energy of the bound
state is equal to −ε where the additional node goes to
infinity, and can be calculated by dichotomy.

3 Calculation results

By the method introduced in the preceding section we
calculate the energy levels E of some excited states of
a helium atom, where the angular momentum L = 0, 1
and 2, the total spin of two electrons S = 0 and 1, and
the parity is even and odd, directly from the Schrödinger
equation (2), where M = 7294.2618241. The results are
listed in Table 1. The convergence of the series in our
numerical calculation is fast, where the highest degree N
of the series is taken to be 9 for the case of ` = 2, λ = 0
and 10 for the others.

For comparison, we also list in Table 1 the results of
other calculations [29–31] and the observations [32–36].
Since the relativistic effect and the spin-orbital interac-
tion were neglected in equation (1), the calculation error
in the order of magnitude (137)−2 ∼ 10−4 is reasonable
in comparison with the observation values. As seen from
the Table 1, our calculation results of the lowest energy
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levels in each spectral term are almost the same as that of
references [29–31]. This shows this methods is effective in
the calculations of the lowest energy levels in each spec-
tral term. But as the number n of the nodes increases,
the quality of our results deteriorate. This suggests that a
larger N should be taken to reach the same accuracies as
that of the lowest energy levels in each spectral term. The
other distinguishing feature is that our results of these
spectral terms, where λ = 1, are very accurate even if
N is very small. This indicates that the basis functions
B

(S)`λ
m (η, ζ) match with the real wave functions.

4 Summary and discussion

In this paper, we present a numerical method to calcu-
late the energy levels of some excited states of a helium
atom directly from the Schrödinger equation with a finite
mass of the nucleus. The motions of the center of mass and
the global rotation of the system are separated completely
from the internal motion, so that only three internal vari-
ables are involved in both the functions and the equations.
By making use of the right internal variables ρ, η, and ζ,
the potential becomes a meromorphic function of internal
variables. Expanding the functions as a series in η and
ζ, and truncating the series at the degree N , we obtain
a finite set of the coupled ordinary differential equations
with respect to the hyperradius ρ. Given an energy −ε,
we propagate F (S)`λ(ρ) or G(S)`λ(ρ) to infinity and count
the corresponding number n(ε) of the nodes. With the
help of the dichotomy, we calculate the energy levels and
the number of nodes of some excited states in a helium
atom listed in Table 1.

The advantages of our method are as follows. First,
the number of basis functions Q`λq (x,y) for the angular
momentum quantum number ` and the parity (−1)`+λ is
a finite number (`+ 1−λ). The contribution from the re-
maining partial angular momentum states is incorporated
into that from the generalized radial functions. Second, we
choose the internal variables (ρ, η, ζ) to make the Coulomb
potential a meromorphic function. This choice improves
the convergence of the series in calculation. At last, our
method is simple for calculating the energy levels of ex-
cited states in a same spectral term, where the matrices
Λ(S)`λ and V (S)`λ are the same. As the energy increases,
the number of the nodes in the hyperradial function in-
creases, just like it occurs in a hydrogen atom. We guess
and believe a generalized Sturm-Liouville theorem holds
in a quantum three-body problem. We will discussed it
elsewhere.

Our method is also suitable for some other Coulomb
three-body systems, such as helium-like ion (H− and Li+
etc.) and positronium negative ion [27], where the mass
ratio M is very large or equal to one. We are trying to
study the system with a very small M , such as the hydro-
gen molecule ion elsewhere.

This work was supported by the National Natural Science
Foundation of China.
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